

FastPack[®] IP Testo and FastPack[®] Testo Immunoassay

For the Quantitative Measurement of Total Testosterone in Human Serum and Plasma

The concentration of testosterone in a given specimen determined with assays from different manufacturers can vary due to differences in assay methods and reagent specificity. The results reported by the laboratory to the physician must include the identity of the testosterone assay method used. Values obtained with different assay methods should not be used interchangeably.

CAUTION: United States Federal law restricts this device to sale and distribution by or on the order of a physician, or to a clinical laboratory; and use is restricted to, by or on the order of a physician.

INTENDED USE

The FastPack[®] IP Testo and FastPack[®] Testo Immunoassay is a paramagnetic particle immunoassay for the in vitro quantitative determination of total testosterone in human serum and plasma. It is intended strictly for in-vitro diagnostic use as an aid in the diagnosis and management of conditions involving excess or deficiency of this androgen. The FastPack[®] IP Testo and FastPack[®] Testo Immunoassay is designed for use with the FastPack[®] IP System and the FastPack[®] System.

SUMMARY

Testosterone (17 β -hydroxyandrost-4-en-3-one) is a C₁₉ steroid hormone and is the major androgen in males. It is predominantly synthesized in the interstitial Leydig cells of the testis and is regulated by interstitial cell stimulating hormone or luteinizing hormone of the anterior pituitary¹. Testosterone is responsible for the masculinization of the genital tract and the development, and maintenance of male secondary sex characteristics, for example, the accessory sex organs, the prostate, seminal vesicles and growth of facial and pubic hair². Testosterone in females is primarily from three sources: the ovaries, the adrenal gland and the peripheral metabolism of the precursor, androstenedione.

Determination of testosterone levels is an integral part in the assessment of hypogonadal states. Some of the major causes of low testosterone levels in males are hypogonadotropic hypogonadism, testicular failure, hyperprolactinemia, Klinefelter's syndrome, hypopituitarism, estrogen therapy and liver cirrhosis. Elevated levels occur in complete androgen resistance (testicular feminization). In females, some of the major causes of increased testosterone levels are ovarian tumors, polycystic ovaries, adrenal tumors and adrenal hyperplasia. This assay is not intended for pediatric use.

The FastPack[®] IP Testo and FastPack[®] Testo immunoassay is based on a competitive immunoassay principle: testosterone in the sample (control or patient) competes with testosterone covalently coupled to a solid phase paramagnetic particle for an alkaline phosphatase labeled anti-testosterone monoclonal antibody. The amount of labeled-anti-testosterone antibody bound to the magnetic particle is inversely proportional to the concentration of total testosterone in the sample.

TEST PRINCIPAL

The FastPack® IP Testo and FastPack® Testo Immunoassay is a competitive chemiluminescence assay.

- Primary incubation: Antibody solution (a buffer solution containing a monoclonal C3-testosterone-specific antibody labeled with alkaline phosphatase) [100 μL] reacts with testosterone from the patients sample, control, or calibrator [100 μL].
- Secondary incubation: The reaction mixture is added to paramagnetic particle with covalently coupled testosterone. During this incubation, the testosterone-coated beads compete with the sample testosterone.
- Removal of unbound materials: The paramagnetic particles are washed with wash buffer [0.2 mL/wash] to remove unbound materials.
- Substrate addition and detection: Chemiluminogenic substrate [140 µL] is added to the solid-phase bound complex and results in "glow" chemiluminescence, which is measured using the FastPack® IP System and FastPack® System analyzer.
- The amount of bound labeled-antibody is inversely proportional to the concentration of testosterone in the sample.

REAGENTS - Content and Concentration

Each FastPack® IP carton contains:

• 30 FastPack® IP

Each FastPack® carton contains:

50 FastPacks

Fach FastPack® Contains:

• Paramagnetic Particles, 150 µL

Paramagnetic particles with covalently coupled testosterone in buffer containing 0.1% sodium azide as a preservative.

Testosterone Antibody Solution, 100 µL

Antibody solution containing mouse monoclonal antibody labeled with alkaline phosphatase in a protein matrix containing 0.03% Proclin[®] 150 as a preservative.

• Wash Buffer, 2.0 mL

Tris buffer containing surfactants.

• Substrate, 140 µL

ImmuGlow™: Indoxyl-3-phosphate and lucigenin in buffer containing preservatives.

Materials required but not provided

- FastPack[®] IP System or FastPack[®] System
 FastPack[®] Testo Calibrator Kit Cat. No. 25000014
 FastPack[®] Testo Control Kit Cat. No. 25000026

REAGENT WARNING AND PRECAUTIONS

- For in vitro diagnostic use only.
- Do not pipette by mouth.
- Do not eat, drink or smoke in designated work areas.
- Wash hands thoroughly after handling specimen.
- HAMA Interference: some individuals have antibodies to mouse protein (HAMA), which can cause interference in immunoassays that employ antibodies derived from mice⁵.
- FastPack® IP reagents and FastPack® reagents are stable until the expiration date on the label when stored and handled as directed. Do not use FastPack® IP reagents and FastPack® reagents beyond expiration date.
- Discard used FastPacks into a biohazard container.
- The components containing sodium azide are classified per applicable European Economic Community (EEC) Directives as: Harmful (Xn). The following are appropriate Risk (R) and Safety (S) phrases:
 - R22 Harmful if swallowed.
 - R32 Contact with acids liberates very toxic gas.
 - S2 Keep out of reach of children.
 - S13 Keep away from food, drink and animal feeding stuffs.
 - S36 Wear suitable protective clothing.
 - S46 If swallowed, seek medical advice immediately and show this container or label.

REAGENT STORAGE INSTRUCTIONS

Store at 2 - 8 °C. Protect from light.

SPECIMEN COLLECTION/PREPARATION

- 1. Serum or lithium heparin or K2 EDTA plasma samples can be used for the FastPack[®] IP Testo and FastPack[®] Testo Immunoassay.
- 2. The National Committee for Clinical Laboratory Standards (NCCLS) provides recommendations for handling, processing, and storing blood.3,4
- 3. Collect all blood samples observing routine precautions for venipuncture.
- 4. It is not required that patients fast prior to blood collection.
- 5. For serum samples:
 - Collect samples in serum blood collection tubes.
 - Ensure that complete clot formation has occurred before centrifugation. This takes approximately 30 minutes. Some samples may exhibit increased clotting time, especially those from patients receiving anticoagulant or thrombolytic therapy.
 - Serum should be centrifuged and separated from the clot within 3 hours from time of collection.
 - Remove serum from the cells prior to storage at 2-8 °C.
 - If not tested within 24 hours, the sample should be frozen at -20 °C or colder.
- 6. For plasma samples:
 - Collect samples in Lithium Heparin or K2 EDTA tubes.
 - Plasma should be centrifuged and separated within 3 hours from time of collection.
 - Remove plasma from the cells prior to storage at 2-8 °C.
 - If not tested within 24 hours, the sample should be frozen at -20 °C or colder.

- 7. Do not freeze samples (-20 °C) for more than two months.
- 8. Frozen samples should be thawed completely and mixed by gentle inversion prior to use.
- 9. Samples should be free of Fibrin, Red Blood Cells, or other particulate material for optimal results.
- 10. Samples showing turbidity and/or particulate matter should be centrifuged prior to use.
- 11. Ensure the samples are free of bubbles.
- 12. Human samples should be handled in accordance with the OSHA standard on Bloodborne Pathogens. 19

ASSAY PROCEDURE

See the FastPack[®] IP System Procedure Manual for detailed instructions for running the FastPack[®] IP System and FastPack[®] System assays.

INSTRUMENTATION

FastPack® IP System or FastPack® System

DETAILS OF CALIBRATION

During the FastPack[®] IP and FastPack[®] production process, Qualigen generates a master standard curve and places this information in the barcode of each FastPack[®] IP and FastPack[®] label, where it can be read by the FastPack[®] IP System or FastPack[®] System analyzer during the testing sequence. The analyzer must be calibrated by the user to ensure that it is properly adjusted for the particular lot of FastPacks that is being used. Separate calibrations must be run for each type of test, i.e. Free PSA, Total PSA or Testosterone. The frequency of calibration varies for each test type. For the FastPack[®] IP Testo and FastPack[®] Testo Immunoassay, the FastPack[®] IP System and FastPack[®] System analyzer must be calibrated once every 14 days or whenever a new lot of Testo FastPacks are to be used.

Whenever the user performs an initial calibration for a particular lot of FastPacks or uses a new lot of calibrator, 2 FastPacks must be run for calibration (duplicates). Whenever recalibration is performed with the same lot of FastPacks and calibrator, 2 FastPacks must be run for calibration. See the FastPack[®] IP System Procedure Manual for "Running a Calibration".

Use FastPack® Testo Calibrator Kit - Cat. No. 25000014

RESULTS

The FastPack[®] Analyzer uses the information from the barcode to construct a lookup table of x,y values that represent the standard curve and estimates the concentration of unknown samples by linear interpolation.

QUALITY CONTROL

Quality control materials simulate real specimens and are essential for monitoring the system performance of assays. Good Laboratory Practices (GLP) include the use of control specimens to ensure that all reagents and protocols are performing properly. Commercial control products (such as Microgenics Liquimmune[®] Liquid Assayed Immunoassay Control, level 1 and 2) are available which contain testosterone. See the FastPack[®] IP System Procedure Manual for "Control Testing".

Users should follow the appropriate federal, state and local guidelines concerning the running of external quality controls

Controls available: FastPack® Testo Control Kit - Cat. No. 25000026

LIMITATION OF PROCEDURE

- Samples can be measured within the reportable range of the analytical sensitivity and the upper end of the calibration range, 1600 ng/dL.
- Samples >1600 ng/dL should be run using another method. Dilution of out of range results is not recommended.
- Samples from patients who have received preparations of mouse monoclonal antibodies for diagnosis or therapy may contain human anti-mouse antibodies (HAMA). Such samples may show either falsely elevated or depressed values when tested with assay kits employing mouse monoclonal antibodies.
- Heterophilic antibodies in a sample have the potential to cause interference in immunoassay systems. Infrequently, testosterone levels may appear elevated due to heterophilic antibodies present in the patient's serum or to nonspecific protein binding. If the testosterone level is inconsistent with clinical evidence, additional testosterone testing is suggested to confirm the result.
- For diagnostic purposes, the Fastpack[®] IP Testo and FastPack[®] Testo Immunoassay should always be assessed in conjunction with the patient's medical history, clinical examination and other findings.
- The FastPack® IP Testo and Fastpack® Testo Immunoassay is not for pediatric use.

EXPECTED RANGE

Serum samples were obtained from 125 random males and 173 random females ranging in age from 18 to 94 years. Samples were obtained from normal, healthy blood donors without any clinically abnormal indications. Testosterone levels were determined using the FastPack[®] IP Testo and Fastpack[®] Testo Immunoassay in conjunction with the FastPack[®] IP System analyzer in order to establish the testosterone concentration in the normal population. Results are in ng/dL.

PERCENTILES

Test Subjects	N	2.5th	5th	Median	95th	97.5th
Males 20-49 years	98	214.1	230.6	550.5	939.1	1009.4
Males > 50 years	27	216.2	226.8	439.0	916.0	1004.1
Females 20-49 years	157	<23.0	<23.0	32.0	277.1	318.2
Females > 50 years	16	<23.0	<23.0	29.5	142.8	157.8

Note: The expected range reflects the donor population of this study group. Each laboratory should determine their own reference range appropriate for their population.

SPECIFIC PERFORMANCE CHARACTERISTICS

Precision

The reproducibility of the testosterone assay was measured by 2 patient serum samples in duplicate (n=60, for each sample) over ten days using three analyzers and two lots of reagents. Precision is expressed either as a Standard Deviation (low level), or Coefficient of Variation (high sample). At the lower level the testosterone value is low thus the CV has little meaning.

Sample	Average (ng/dL)	Between Run	Between Analyzer	Between Reagent Lot	Total
Low Sample	14.0	SD = 6.0	SD = 3.0	SD = 1.0	SD = 7.0
High Sample	712.0	%CV = 10.3	%CV = 3.8	%CV = 5.0	%CV = 10.9

Also, a FastPack[®] IP Testo and FastPack[®] Testo immunoassay precision study was conducted per the CLSI EP5-A standard. Three levels of each of the sample types (Lithium Heparin and K2 EDTA plasma) were tested along with 1 level of control. One reagent lot was used for testing. Each test sample was tested 4 reps per day for 20 days.

FastPack® IP Testo and FastPack® Testo EP5-A precision results in ng/dL.

		Within-Day	Total	
Sample	Average	%CV	%CV	_
Control	550.4	7.2	7.3	
K2 EDTA Low Pool	72.6	8.6	12.4	
K2 EDTA Mid Pool	504.1	7.0	8.4	
k2 EDTA High Pool	1092.5	4.4	4.7	
Lithium Heparin Low Pool	83.9	8.0	10.5	
Lithium Heparin Mid Pool	504.3	7.7	8.8	
Lithium Heparin High Pool	1071.0	3.6	3.7	

MEASURING RANGE

Spike Recovery:

A patient sample was spiked with testosterone from a human based stock material. The stock concentration was 5400 ng/dL. All samples recover within the ± 20% acceptance criteria.

Sample Number	Added Testosterone (ng/dL)	Expected Value Testosterone (ng/dL)	Observed Value Testosterone (ng/dL)	Recovery (%)
1	0	398.0	398.0	100
2	100.0	498.0	533.0	107
3	251.0	649.0	714.0	110
4	501.0	899.0	927.0	103
5	752.0	1150.0	1090.0	94.8
6	1002.0	1400.0	1360.0	97.1

The measuring range was evaluated following the CLSI EP6-A guideline. For Testosterone in serum, Lithium Heparin plasma, and K2 EDTA plasma as tested by the FastPack Testosterone assay, the measuring range is from 23.0 ng/dL (Limit of Quantitation) to 1600 ng/dL. A recovery study was performed to confirm the measuring range. Study results are summarized in the tables below. Diluting samples above 1,600 ng/dL is not recommended.

K2 EDTA

Dilution	Recovery (ng/dL)	Target (ng/dL)	%Bias
1.00	1639.4	1639.4	0.0
0.75	1344.1	1232.8	9.0
0.50	945.7	826.2	14.5
0.25	468.8	419.5	11.7

Lithium Heparin

Dilution	Recovery (ng/dL)	Target (ng/dL)	%Bias
1.00	1686.6	1686.6	0.0
0.75	1342.5	1267.6	5.9
0.50	990.6	848.7	16.7
0.25	517.4	429.7	20.4

Serum

Dilution	Recovery (ng/dL)	Target (ng/dL)	%Bias
1.00	1610.9	1610.9	0.0
0.75	1276.9	1208.2	5.7
0.50	917.9	805.5	13.9
0.25	455.5	402.8	13.1

Method Comparison

Clinical samples were used to compare the serum values obtained using the FastPack[®] IP Testo and FastPack[®] Testo method and the serum value obtained using the DPC Coat-a-Count RIA method. The values were evaluated for agreement using Deming regression analysis. Spearman rank correlation was used to test association between the values.

n	Range of Observation (ng/dL)	Intercept (ng/dL)	Slope	R
135	24.0 – 1587.2	6.5	1.054	0.914

MATRIX COMPARISONS: SERUM VS. PLASMA

Lithium Heparin Plasma vs. Serum

Blood collections were obtained from 60 healthy male and female volunteers between the ages of 21 and 56 (samples from 11 of these volunteers were spiked with varying amounts of testosterone to fill out the assay range), and these specimens were processed to heparin plasma and serum samples in parallel.

n	Range of Observation (ng/dL)	Intercept (ng/dL)	Slope	R²	Sy x
60	24.0 – 1440.0 (Heparin Plasma)				
60	28.0 - 1420.0 (Serum)	-8.0	0.992	0.987	43.9

K2 EDTA Plasma vs. Serum

Blood collections were obtained from 67 healthy male and female volunteers between the ages of 18 and 59 (samples from 11 of these volunteers were spiked with varying amounts of testosterone to fill out the assay range), and these specimens were processed to K2 EDTA plasma and serum samples in parallel.

n	Range of Observation (ng/dL)	Intercept (ng/dL)	Slope	R²	Sy x
67	27.5 – 1425.0 (K2 EDTA Plasma)				
67	26.0 – 1420.0 (Serum)	-10.9	0.998	0.996	26.4

INTERFERING SUBSTANCES

Two concentrations of bilirubin, hemoglobin and triglycerides (using Intralipid®) were added to serum, Lithium Heparin plasma, and K2 EDTA plasma samples containing concentrations of <100 ng/dL, approximately 500 ng/dL and approximately 1,000 ng/dL testosterone. The value obtained for the sample with each interfering substance was compared to the value obtained without the interfering substance. Interference was defined as ± 15% recovery for the lowest concentration of interferent and testosterone concentration across all three sample matrices. These compounds did not show interference at the levels indicated below. Triglyceride demonstrated interference for all concentrations of interferent tested at <100 ng/dL of testosterone. Based on these studies, no visibly hemolyzed or cloudy (lipemic) samples should be used with this assay. Lipemia may be removed by ultracentrifugation, if available, and analyzed using the supernatant.

Test Compound	Test Concentration
Bilirubin	10 mg/dL
Hemoglobin	250 mg/dL
Triglycerides	See comment above

Limit of Blank (LOB), Limit of Detection (LOD), and Limit of Quantitation (LOQ)

The limit of blank (LOB, the highest measurement likely to be observed for a blank sample), limit of detection (LOD, the lowest amount of analyte in a sample that can be distinguished (with 95% confidence) from the blank sample, and limit of quantitation (LOQ, the lowest amount of analyte in a sample that can be reliably detected and at which the total error meets the pre-specified requirement for accuracy) were determined for serum, Lithium Heparin plasma, and K2 EDTA plasma according to CLSI EP17-A. In this study, the Limits of Blank is 3.8 ng/dL, the LOD is 14.5 ng/dL Testosterone, and the LOQ is 23.0 ng/dL Testosterone.

Analytical Specificity

For the monoclonal antibody used, the following cross-reactivity contained in the table below were found. What is tabulated are the maximum % cross-reactivity observed in the study. Twenty three compounds were tested. Serum, Lithium Heparin plasma, and K2 EDTA plasma samples containing concentrations of < 100 ng/dL, approximately 500 ng/dL and approximately 1,000 ng/dL testosterone were spiked with two levels of the cross reactants. % cross-reactivity is defined as 100 x (Testo Recovery – Baseline Testo)/Cross Reactant concentration. Androsetenediol and 19-Norethisterone Acetate generated the highest cross-reactivity in this study though although the magnitude was limited to <4%.

Cross-Reactant	Levels Tested (ng/dL)	% Cross-reactivity
5DHT	2500, 5000	2.75
Norethindrone	5000, 10000	1.72
Androstenediol	5000, 10000	3.26
19-Norethisterone Acetate	5000, 10000	3.26
Oxymetholone	5000, 10000	2.37
11-Deoxycortisol	50000, 100000	0.08
19-Nortestosterone	50000, 100000	1.82
Corticosterone	250000, 500000	0.02
Estriol	5000, 10000	0.52
Danazol	50000, 100000	0.02
Estradiol	50000, 100000	0.27
Androstenedione	50000, 100000	1.42
Progesterone	50000, 100000	0.09
Cortisone	50000, 100000	0.24
17-alpha-Hydroxyprogesterone	5000, 10000	1.72
Estrone	25000, 50000	0.22
DHEA Sulfate	50000, 100000	0.08
Ethinylestradiol	5000, 10000	1.56
Methyltestosterone	5000, 10000	1.08
Norgestrel	5000, 10000	1.71
Androsterone	10000000, 5000000	0.02
Cortisol	400000, 800000	0.00
DHEA	500000, 1000000	0.02

E-6

REFERENCES

- Wilson, JD, George, FW, Griffin, JE: The hormonal control of sexual development. Science, 211: 1278 1284, 1981.
- Imperato-Mcginley, J, Guerrero, T, Peterson, RE: Steroid 5 a-reductase deficiency in man: An inherited form of male pseudohermaphroditism. Science, 186:1213 1215, 1974.
- Approved Standard procedures for the collection of diagnostic blood specimens by venipuncture. 5th Edition: H3-A5: 23(32) 2003, National Committee for Clinical Laboratory Standards (NCCLS)
- ⁴ Approved guideline procedures for the handling and processing of blood specimens, H18-A2;19(21), 1999. National Committee for Clinical Laboratory Standards (NCCLS).
- Schroff, RJ, Foon, KÁ, et.al.: Human anti-mouse immunoglobin responses in patients receiving monoclonal antibody therapy. Cancer Res. 45:879 – 885. 1985
- ⁶ US Department of Labor, Occupational Safety and Health Administration, 29CFR Part 1910.1030, Occupational Exposure to Bloodborne Pathogens; Final Rule. Federal Register 1991; 56(235): 64175-82.
- Gronowski AM, Landau-Levine M. Reproductive Endocrine Function in Tietz Textbook of Clinical Chemistry. Ed. Edward R. Ashwood, and Carl A. Burtis. 3rd ed. N.p.:W. B. Saunders Company, 1999. 1603-1636.

Qualigen, Inc. Carlsbad, CA 92011 USA Technical Support (760) 918-9165 (877) 709-2169

MDSS Schiffgraben 41 30175 Hannover Germany

© 2000 Qualigen, Inc. All rights reserved. Qualigen and FastPack are trademarks or registered trademarks of Qualigen, Inc. All other trademarks are the property of their respective owners.

FastPack® IP Testo und FastPack® Comment [SD1]: Testo Immunoassay

Produktnr. 64000009 Ver. 007 (09/16)

Zur quantitativen Messung des Gesamttestosterons in menschlichem Serum und Plasma

Die Konzentration von Testosteron in einer beliebigen Probe, die durch Assays von verschiedenen Herstellern bestimmt wird, kann sich aufgrund von Unterschieden in den Assaymethoden und individuellen Eigenschaften von Reagenzien unterscheiden. Die Ergebnisse, die vom Labor an den Arzt weitergegeben werden, müssen die Identität der verwendeten Testosteron-Assaymethode enthalten. Werte, die durch unterschiedliche Assaymethoden erlangt werden, sollten nicht synonym verwendet werden.

ACHTUNG: Das US-Bundesgesetz beschränkt dieses Gerät auf den Verkauf oder die Weitergabe durch oder auf Verschreibung eines Arztes oder an ein Krankenhauslabor, und der Gebrauch ist beschränkt auf oder auf Verschreibung eines Arztes.

VERWENDUNGSZWECK

Das FastPack[®] IP Testo und FastPack[®] Testo Immunoassay ist ein paramagnetisches Partikel-Immunoassay für die in-vitro Mengenbestimmung von Gesamttestosteron in menschlichem Serum oder Plasma. Es ist ausschließlich für in-vitro Diagnose als Hilfe bei der Diagnose und Handhabung von Bedingungen mit Übermaß oder Mangel dieses Androgens vorgesehen. Das FastPack[®] IP Testo und FastPack[®] Testo Immunoassay sind für den Gebrauch mit dem FastPack[®] IP-System and FastPack[®]-System vorgesehen.

ZUSAMMENFASSUNG

Testosteron (17ß-hydroxyandrost-4-en-3-on) ist ein C₁₉-Steroidhormon und das wichtigste Androgen bei Männern. Es wird vor allem in den Leydig-Zwischenzellen synthetisiert und wird durch ein Zwischenzellen stimulierendes Hormon oder luteinisierendes Hormon der anterioren Hypophyse reguliert¹. Testosteron ist verantwortlich für die Maskulinisierung des Genitaltrakts und die Entwicklung und Aufrechterhaltung der sekundären Geschlechtseigenschaften, zum Beispiel der untergeordneten Geschlechtsorgane, die Prostata, Samenbläschen und das Wachstum von Gesichts- und Schambehaarung². Testosteron bei Frauen kommt vor allem aus drei Quellen: den Eierstöcken, den Nebennieren und dem peripheren Metabolismus der Vorläuferverbindung Androstendion.

Die Bestimmung des Testosteronspiegel ist ein integraler Teil bei der Beurteilung des hypoginadalen Zustands. Einige der wichtigsten Ursachen für einen niedrigen Testosteronspiegel bei Männern sind hypogonadotroper Hypogonadismus, Hodenfehlfunktion, Hyperprolaktinämie, Klinefelter-Syndrom, Hypopituitarismus, Östrogentherapie und Leberzirrhose. Erhöhte Spiegel kommen bei vollständiger Androgenresistenz vor (testikuläre Feminisierung). Bei Frauen sind die Hauptursachen eines erhöhten Testosteronspiegels Ovarialtumore, polyzystische Eierstöcke, Nebennierentumore und Nebennierenhyperplasie. Dieses Assay ist nicht für den pediatrischen Gebrauch bestimmt.

Das FastPack® IP Testo und FastPack® Testo Immunoassay basiert auf einem vergleichenden Immunoassayprinzip: Testosteron in der Probe (Kontrolle oder Patient) steht im Wettbewerb mit Testosteron, das mit einem paramagnetischen Festphasenpartikel für eine alkalische Phosphatase verbunden ist, die als monoklonale Antitestosteron-Antikörper gekennzeichnet ist. Die Menge der gekennzeichneten Antitestosteron-Antikörper, die an den magnetischen Partikel gebunden sind, ist umgekehrt proportional zur Konzentration des Gesamttestosterons in der Probe.

TESTGRUNDLAGE

Das FastPack® IP Testo und FastPack® Testo Immunoassay ist ein kompetetives Chemolumineszenz-Assay.

- Primäre Inkubation: Antikörper-Lösung (eine Pufferlösung, die einen monoklonalen, C3-Testosteron-spezifischen Antikörper enthält, der mit alkalischer Phosphatase gekennzeichnet ist) [100 μl] reagiert mit Testosteron aus der Patientenprobe, -kontrolle oder -kalibrator [100 μl].
- Sekundäre Inkubation: Das Reaktionsgemisch wird zum paramagnetischen Partikel mit kovalent verbundenem Testosteron hinzugefügt. Während dieser Inkubation konkurrieren die Testosteron-beschichteten Kügelchen mit dem Testosteron aus der Probe.
- Entfernung nicht gebundenen Materials: Die paramagnetischen Partikel werden mit Wäschepuffer [0,2 ml/Wäsche] herausgespült, um ungebundenes Material zu entfernen.
- Substrataddition und -erkennung: Chemilumineszierendes Substrat [140 µl] wird zum in der Festphase gebundenen Komplex hinzugefügt und führt zu einer "leuchtenden" Chemilumineszenz, die mit dem FastPack[®] IP System und dem FastPack[®] System-Analysegerät gemessen wird.
- Die Menge der gebundenen gekennzeichneten Antikörper ist umgekehrt proportional zur Konzentration des Gesamttestosterons in der Probe.

REAGENZIEN - Inhalt und Konzentration

Jeder FastPack® IP-Karton enthält:

30 FastPack[®] IP

Jeder FastPack®-Karton enthält:

50 FastPacks

Jedes FastPack[®] enthält:

Paramagnetische Partikel, 150 μl

Paramagnetische Partikel mit kovalent gebundenem Testosteron im Puffer mit 0,1% Natriumazid als Konservierungsmittel.

Testosteron-Antikörperlösung, 100 μl

Antikörperlösung mit monoklonalen Maus-Antikörpern, die mit alkalischem Phosphatase in einer Proteinmatrix mit 0,03% Proclin[®] 150 als Konservierungsmittel gekennzeichnet sind.

Waschpuffer: 2,0 ml

Tris-Puffer enthält Tenside.

Substrat: 140 μl

ImmuGlow™: Indoxyl-3-phosphat und Lucigenin in Puffer mit Konservierungsmitteln.

Benötigte aber nicht mitgelieferte Materialien

- FastPack® IP System oder FastPack® System
- FastPack® Testo Calibrator Kit Kat. Nr. 25000014
- FastPack® Testo Control Kit Kat. Nr. 25000026

REAGENZWARNUNG UND VORSICHTSMASSNAHMEN

- Nur für in-vitro Diagnose.
- Nicht mit dem Mund pipettieren.
- In gekennzeichneten Arbeitsbereiten nicht essen, trinken oder essen.
- Nach dem Umgang mit Proben Hände gründlich waschen.
- HAMA-Interferenz: manche Menschen haben Antikörper gegen Mausprotein (HAMA), die zu Interferenzen bei Immunoassays führen können, die von Mäusen gewonnene Antikörper verwenden⁵.
- FastPack[®] IP-Reagenzien und FastPack[®]-Reagenzien sind bis zum Ablauf des Haltbarkeitsdatums auf dem Etikett stabil, wenn sie wie angewiesen gelagert und gehandhabt werden. Verwenden Sie keine FastPack IP-Reagenzien und FastPack®-Reagenzien, wenn sie schon abgelaufen sind.
- Entsorgen Sie gebrauchte FastPacks in einem Behälter für biologische Gefahrenstoffe.
- Die Bestandteile, die Natriumazid enthalten, sind gemäß der entsprechenden Richtlinien der Europäischen Wirtschaftsgemeinschaft (EWG) eingestuft als: Schädlich (Xn). Die folgenden sind Risiko- (R) und Sicherheitshinweise (S):
 - R22 Gesundheitsschädlich beim Verschlucken.

 - Gestindneitsschadich beim Verschlücken.
 Entwickelt bei Berührung mit Säure giftige Gase.
 Für Kinder unzugänglich aufbewahren.
 Von Nahrungsmitteln, Getränken und Futtermitteln fernhalten.
 Bei der Arbeit geeignete Schutzkleidung tragen.

 - S46 Bei Verschlucken sofort ärztlichen Rat einholen und Verpackung oder Etikett vorzeigen.

LAGERANWEISUNG REAGENZIEN

Bei 2 – 8 °C lagern. Vor Sonnenlicht schützen.

PROBENSAMMLUNG/-VORBEREITUNG

- Serum oder Lithiumheparin oder K2 EDTA Plasmaproben k\u00f6nnen f\u00fcr das FastPack\u00a8 IP Testo und FastPack\u00a8 Testo Immunoassay verwendet werden.
- Das National Committee for Clinical Laboratory Standards (NCCLS) gibt Empfehlungen für die Handhabung, Verarbeitung und Lagerung von Blut.3,4
- Nehmen Sie alle Blutproben unter Berücksichtigung von Routinevorsichtsmaßnahmen bei der Venenpunktion.
- Es ist nicht notwendig, dass Patienten vor der Blutentnahme nichts essen.
- 5. Für Serumproben:
 - Sammeln Sie Proben in Serum Blutentnahmeröhrchen
 - · Stellen Sie sicher, dass sich vor der Zentrifugation Klumpen vollständig gebildet haben. Dies dauert etwa 30 Minuten. Bei einigen Proben kann die Klumpenbildung länger dauern, insbesondere bei Patienten, die Gerinnungshemmer oder eine Thrombolysetherapie erhalten.
 - · Serum sollte innerhalb von 3 Stunden nach der Blutentnahme zentrifugiert und von den Klümpchen getrennt
 - Entfernen Sie Serum aus den Zellen, bevor es bei 2 8 °C gelagert wird.
 - Wenn die Probe nicht innerhalb von 24 Stunden getestet wird, sollte sich bei -20 °C oder kälter eingefroren werden.

- 6. Für Plasmaproben:
 - Sammeln Sie Proben in Lithiumheparin- oder K2 EDTA-Röhrchen.
 - Plasma sollte innerhalb von 3 Stunden nach der Blutentnahme zentrifugiert und von den Klümpchen getrennt werden.
 - Entfernen Sie Plasma aus den Zellen, bevor es bei 2 8 °C gelagert wird.
 - Wenn die Probe nicht innerhalb von 24 Stunden getestet wird, sollte sich bei -20 °C oder kälter eingefroren werden.
- 7. Proben dürfen nicht länger als zwei Monate eingefroren (-20 °C) werden.
- 8. Gefrorene Proben sollten vor Gebrauch durch vorsichtige Inversion vollständig aufgetaut und gemischt werden.
- 9. Proben dürfen kein Fibrin, rote Blutzellen oder andere Partikel enthalten, um optimale Ergebnisse zu erlangen.
- 10. Proben, die Trübung und/oder Partikel zeigen, sollten vor Gebrauch zentrifugiert werden.
- 11. Stellen Sie sicher, dass Proben blasenfrei sind.
- 12. Menschliche Proben müssen gemäß der OSHA-Norm für Infektionen bei offenen Wunden. 19

ASSAYVERFAHREN

Genaue Anweisungen zum Durchführen von Assays mit dem FastPack[®] IP-System und FastPack[®]-System finden Sie im Verfahrenshandbuch des FastPack[®] IP-Systems.

INSTRUMENTIERUNG

FastPack® IP System oder FastPack® System

DETAILS DER KALIBRIERUNG

Während des FastPack® IP und FastPack® Produktionsprozesses erzeugt Qualigen eine Master-Normkurve und speichert diese Informationen im Strichcode auf dem Etikett jedes FastPack® IP und FastPack®, wo sie vom Analysegerät des FastPack® IP-Systems oder FastPack®-Systems während der Testsequenz gelesen werde kann. Das Analysegerät muss vom Benutzer kalibriert werden, um sicherzustellen, dass es richtig auf das entsprechende Los der FastPacks geeicht ist, die verwendet werden. Für jede Art von Test müssen eigene Kalibrierungen durchgeführt werden, d. h. freier PSA, Gesamt-PSA oder Testosteron. Die Häufigkeit der Kalibrierung hängt von jedem Testtyp ab. Für FastPack® IP Testo und FastPack® Testo Immunoassay muss das Analysegerät des FastPack® IP-Systems und FastPack®-System einmal alle 14 Tage oder dann kalibriert werden, wenn ein neues Los von Testo FastPacks verwendet wird.

Immer wenn der Benutzer eine erste Kalibrierung für ein bestimmtes Los von FastPacks durchführt oder ein neues Los von Kalibratoren verwendet, müssen 2 FastPacks zur Kalibrierung (Duplikate) verwendet werden. Immer wenn eine Rekalibrierung mit dem gleichen Los von FastPacks und Kalibrator durchgeführt wird, müssen 2 FastPacks für die Kalibrierung verwendet werden. Siehe Verfahrenshandbuch des FastPack® IP-Systems zu "Durchführen einer Kalibrierung".

Verwenden Sie einen FastPack® Testo Calibrator Kit – Kat. Nr. 25000014

ERGEBNISSE

Das FastPack[®] Analysegerät verwendet die Informationen aus dem Strichcode, um eine Lookup-Tabelle mit x-/y-Werten, die die Normkurve darstellen und bestimmt die Konzentration unbekannter Proben durch lineare Interpolation.

QUALITÄTSSICHERUNG

Qualitätssicherungsmaterialien simulieren echte Proben und sind unerlässlich für die Überwachung der Systemleistung von Assays. Gute Laborpraxis umfasst den Einsatz von Kontrollproben, um sicherzustellen, dass alle Reagenzien und Protokolle korrekt durchgeführt werden. Es gibt kommerzielle Kontrollprodukte (wie Microgenics Liquimmune® Liquid Assayed Immunoassay Control, Stufe 1 und 2), die Testosteron enthalten. Siehe Verfahrenshandbuch des FastPack® IP-Systems zu "Kontrolltest".

Anwender sollten immer Bundes-, Landes- und örtliche Richtlinien bezüglich der Durchführung externer Qualitätssicherungen befolgen.

Verfügbare Kontrollen: FastPack® Testo Control Kit – Kat. Nr. 25000026

GRENZEN DES VERFAHRENS

- Proben können innerhalb des anzeigbaren Bereichs der analytischen Genauigkeit und dem oberen Ende des Kalibrierungsbereichs, 1600 ng/dl, gemessen werden.
- Proben >1600 ng/dl müssen mit einer anderen Methode gemessen werden. Die Verdünnung von Ergebnissen, die außerhalb des Bereichs liegen, wird nicht empfohlen.
- Proben von Patienten, die Präparate mit monoklonaren Antikörpern aus Mäusen zur Diagnose oder Therapie erhalten haben, enthalten eventuell humane anti-Maus-Antikörper (HAMA). Solche Proben zeigen dann eventuell entweder falsch erhöhte oder gesenkte Werte, wenn sie mit Assaysätzen getestet werden, die monoklonale Antikörper der Maus enthalten.

- Heterophile Antikörper in einer Probe können Interferenzen in Immunoassay-Systemen verursachen. Ab und zu
 erscheinen Testosteronwerte erhöht, da heterophile Antikörper im Serum des Patienten vorhanden sind oder
 aufgrund von nichtspezifischer Proteinbindung. Ist der Testosteronwert konsistent mit klinischen Beweisen,
 sollten weitere Testosterontests durchaeführt werden, um das Ergebnis zu bestätigen.
- sollten weitere Testosterontests durchgeführt werden, um das Ergebnis zu bestätigen.

 Zu Diagnosezwecken sollten das Fastpack[®] IP Testo und FastPack[®] Testo Immunoassay zusammen mit der Anamnese des Patienten, klinischen Untersuchungen und anderen Befunden beurteilt werden.
- Das FastPack[®] IP Testo and Fastpack[®] Testo Immunoassay ist nicht für die Verwendung bei Kindern vorgesehen.

ERWARTETER BEREICH

Serumproben wurden von 125 zufällig ausgewählten Männern und 173 zufällig ausgewählten Frauen im Alter zwischen 18 und 94 Jahren entnommen. Die Proben wurden von normalen, gesunden Blutspendern ohne klinisch abnormale Kennzeichen entnommen. Testosteronwerte wurden mit FastPack[®] IP Testo und Fastpack[®] Testo Immunoassay zusammen mit dem FastPack[®] IP System Analysegerät bestimmt, um die Testosteronkonzentration bei der normalen Bevölkerung zu ermitteln. Die Ergebnisse sind in ng/dl.

			PER	RZENTIL		
Testperson	N	2,5	5	Median	95	97,5
Männlich, 20-49 Jahre	98	214,1	230,6	550,5	939,1	1009,4
Männlich > 50 Jahre	27	216,2	226,8	439,0	916,0	1004,1
Weiblich, 20-49 Jahre	157	<23,0	<23,0	32,0	277,1	318,2
Weiblich > 50 Jahre	16	<23.0	<23.0	29,5	142,8	157,8

Hinweis: Der erwartete Bereich spiegelt die Spenderpopulation dieser Studiengruppe wider. Jedes Labor sollte den eigenen Referenzbereich für seine eigene Population bestimmen.

SPEZIFISCHE LEISTUNGSEIGENSCHAFTEN

Präzision

Die Reproduzierbarkeit des Testosteronassays wurde mit 2 Patientenserumproben in doppelter Ausführung (n=60 für jede Probe) über einen Zeitraum von zehn Tagen mithilfe von drei Analysegeräten und zwei Losen von Reagenzien gemessen. Die Präzision wird entweder als Standardabweichung (niedrige Stufe) oder Variationskoeffizient (hohe Probe) ausgedrückt. Bei der niedrigen Stufe ist der Testosteronwert niedrig, entsprechend hat der VK wenig Bedeutung.

Probe	Mittel (ng/dl)	Zwischen Durchgängen	Zwischen Analysegerät	Zwischen Reagenzlos	Gesamt
Niedrige Probe	14,0	SA = 6,0	SA = 3,0	SA = 1,0	SA = 7,0
Hohe Probe	712,0	%VK = 10,3	%VK = 3,8	%VK = 5,0	%VK = 10,9

Außerdem wurde eine FastPack[®] IP Testo und FastPack[®] Testo Immunoassay-Präzisionsstudie gemäß der Norm CLSI EP5-A durchgeführt. Drei Stufen jedes Probentyps (Lithiumheparin und K2 EDTA-Plasma) wurden zusammen mit 1 Kontrollstufe getestet. Ein Reagenzlos wurde zum Testen verwendet. Jede Testprobe wurde über einen Zeitraum von 20 Tagen vier Mal pro Tag getestet.

FastPack® IP Testo and FastPack® Testo EP5-A Präzisionsergebnisse in ng/dl.

		Gleicher Tag	Gesamt
Probe	Durchschnitt	%VK	%VK
Kontrolle	550,4	7,2	7,3
K2 EDTA Niedriger Pool	72,6	8,6	12,4
K2 EDTA Mittlerer Pool	504,1	7,0	8,4
K2 EDTA Hoher Pool	1092,5	4,4	4,7
Lithiumheparin Niedriger Pool	83,9	8,0	10,5
Lithiumheparin Mittlerer Pool	504,3	7,7	8,8
Lithiumheparin Hoher Pool	1071,0	3,6	3,7

MESSBEREICH

Spike-Erholung:

Eine Patientenprobe wurde mit Testosteron eines menschlichen Lagermaterials versetzt. Die Konzentration dieses Materials war 5400 ng/dl. Alle Proben erholen sich innerhalb des ± 20% Annahmekriteriums.

Proben- nummer	Zugesetztes Testosteron (ng/dl)	Erwarteter Testosteronwert (ng/dl)	Beobachteter Testosteronwert (ng/dl)	Erholung (%)
1	0	398,0	398,0	100
2	100,0	498,0	533,0	107
3	251,0	649,0	714,0	110
4	501,0	899,0	927,0	103
5	752,0	1150,0	1090,0	94,8
6	1002,0	1400,0	1360,0	97,1

Der Messbereich wurde gemäß der Richtlinie CLSI EP6 A beurteilt. Bei Testosteron im Serum, Lithiumheparinplasma und K2 EDTA-Plasma liegt der Messbereich wie bei FastPack Testosteronassay zwischen 23,0 ng/dl (Bestimmungsgrenze) und 1600 ng/dl. Eine Erholungsstudie wurde durchgeführt, um den Messbereich zu bestätigen. Die Studienergebnisse sind in den Tabellen unten zusammengefasst. Die Verdünnung von Proben oberhalb von 1600 ng/dl wird nicht empfohlen.

K2 EDTA

Verdünnung	Erholung (ng/dl)	Soll (ng/dl)	%Bias
1,00	1639,4	1639,4	0,0
0,75	1344,1	1232,8	9,0
0,50	945,7	826,2	14,5
0,25	468,8	419,5	11,7

Lithiumheparin

<u>Verdünnung</u>	Erholung (ng/dl)	Soll (ng/dl)	%Bias
1,00	1686,6	1686,6	0,0
0,75	1342,5	1267,6	5,9
0,50	990,6	848,7	16,7
0,25	517,4	429,7	20,4

Serum

Verdünnung	Erholung (ng/dl)	Soll (ng/dl)	%Bias
1,00	1610,9	1610,9	0,0
0,75	1276,9	1208,2	5,7
0,50	917,9	805,5	13,9
0,25	455,5	402,8	13,1

Methodenvergleich

Es wurden klinische Proben verwendet, um die Serumwerte, die über die FastPack[®] IP Testo und FastPack[®] Testo Methode erhalten wurden, mit dem Serumwert zu vergleichen, der über die DPC Coat-a-Count RIA Methode erhalten wurde. Die Werte wurden mithilfe des Deming-Regressionstests auf Übereinstimmung hin beurteilt. Um die Verbindung zwischen den Werten zu testen, wurde die Rangkorrelation nach Spearman verwendet.

n	Beobachtungsbereich (ng/dl)	Schnittpunkt (ng/dl)	Steigung	R
135	24,0 – 1587,2	6,5	1,054	0,914

MATRIXVERGLEICHE: SERUM VS. PLASMA

Lithiumheparin-Plasma vs. Serum

Blutspenden wurden von 60 gesunden männlichen und weiblichen Freiwilligen im Alter zwischen 21 und 56 Jahren gesammelt (Proben von 11 dieser Freiwilligen wurden mit unterschiedlichen Mengen Testosteron versetzt, um den Assay-Bereich auszufüllen) und diese Proben wurden parallel zu Heparinplasma und Serumproben verarbeitet.

n	Beobachtungsbereich (ng/dl)	Schnittpunkt (ng/dl)	Steigung	R²	Sy x
60	24,0 - 1440,0 (Heparinplasma)				
60	28,0 – 1420,0 (Serum)	-8,0	0,992	0,987	43,9

K2 EDTA Plasma vs. Serum

Blutspenden wurden von 67 gesunden männlichen und weiblichen Freiwilligen im Alter zwischen 18 und 59 Jahren gesammelt (Proben von 11 dieser Freiwilligen wurden mit unterschiedlichen Mengen Testosteron versetzt, um den Assay-Bereich auszufüllen) und diese Proben wurden parallel zu K2 EDTA-Plasma und Serumproben verarbeitet.

n	Beobachtungsbereich (ng/dl)	Schnittpunkt (ng/dl)	Steigung	R²	Sy x
67	27,5 – 1425,0 (K2 EDTA-Plasma)				
67	26,0 - 1420,0 (Serum)	-10,9	0,998	0,996	26,4

STÖRENDE SUBSTANZEN

Zwei Konzentrationen von Bilirubin, Hämoglobin und Triglyzeriden (mithilfe von Intralipid®) wurden dem Serum, Lithiumheparinplasma und K2 EDTA-Plasmaproben zugesetzt, die Konzentrationen von <100 ng/dl, ca. 5000 ng/dl und ca. 1.000 ng/dl besaßen. Der erhaltene Wert für die Probe mit jeder störenden Substanz wurde mit dem Wert verglichen, der ohne die störenden Substanzen erhalten wurde. Eine Interferenz wurde als ± 15% Erholung für die niedrigste Konzentration der störenden Substanz und Testosteronkonzentration über alle drei Probenmatrizen hinweg definiert. Diese Verbindungen zeigten keine Interferenz bei den unten angezeigten Stufen. Triglyzerid zeigte eine Interferenz bei allen Konzentrationen des Interferents, die bei <100 ng/dl Testosteron getestet wurden. Auf Basis dieser Studien sollten keine sichtbar hämolisierten oder trüben (lipämischen) Proben mit diesem Assay verwendet werden. Lipämie kann durch Ultrazentrifugation, sofern vorhanden, entfernt und mit dem Überstand analysiert werden

Testverbindung	Testkonzentration
Bilirubin	10 mg/dl
Hämoglobin	250 mg/dl
Triglyzeride	Siehe Kommentar oben

Erfassungsgrenze (LOB), Nachweisgrenze (LOD) und Bestimmungsgrenze (LOQ)

Die Erfassungsgrenze (LOB, die höchste Messung, die für eine leere Probe wahrscheinlich festgestellt wird), Nachweisgrenze (LOD, der niedrigste Analytwert in einer Probe, der (mit 95% Konfidenz) von einer leeren Probe unterschieden werden kann) und Bestimmungsgrenze (LOQ, der niedrigste Analytwert in einer Probe, der zuverlässig erkannt werden kann und bei dem der Gesamtfehler die vorher definierte Anforderung für Genauigkeit erfüllt) wurden für Serum, Lithiumheparinplasma und K2 EDTA-Plasma gemäß CLSI EP 17-A bestimmt. In dieser Studie beträgt die Erfassungsgrenze 3,8 ng/dl, die LOD 14,5 ng/dl Testosteron und die Bestimmungsgrenze 23,0 ng/dl Testosteron.

Analysespezifizität

Für den verwendeten monoklonalen Antikörper wurde die in der Tabelle unten enthaltene Kreuzreaktivität gefunden. In der Tabelle ist die maximale % Kreuzreaktivität aufgeführt, die in der Studie beobachtet wurde. 23 Verbindungen wurden getestet. Serum, Lithiumheparinplasma und K2 EDTA-Plasmaproben, die Konzentrationen von < 100 ng/dl, ca. 500 ng/dl und ca. 1.000 ng/dl Testosteron wurden mit zwei Stufen von Kreuzreaktionsmitteln versetzt. % Kreuzreaktivität ist definiert als 100 x (Testo-Erholung - Grundlinie Test)/Konzentration Kreuzreaktionsmittel. Androsetenediol und 19-Norethisteronacetat erzeugten die höchste Kreuzreaktivität in dieser Studie, auch wenn der Umfang auf <4% beschränkt war.

Kreuzreaktionsmittel	Getestete Stufe (ng/dl)	% Kreuzreaktivität
5-a-DHT	2500, 5000	2,75
Norethindron	5000, 10000	1,72
Androstenediol	5000, 10000	3,26
19- Norethindronacetat	5000, 10000	3,26
Oxymetholon	5000, 10000	2,37
11-Deoxycortisol	50000, 100000	0,08
19-Nortestosteron	50000, 100000	1,82
Corticosteron	250000, 500000	0,02
Estriol	5000, 10000	0,52
Danazol	50000, 100000	0,02
Estradiol	50000, 100000	0,25
Androstenedion	50000, 100000	1,42
Progesteron	50000, 100000	0,09
Cortison	50000, 100000	0,24
17-alpha-Hydroxyprogesteron	5000, 10000	1,72
Östron	25000, 50000	0,22
DHEA-Sulfat	50000, 100000	0,08
Ethinylestradiol	5000, 10000	1,56
Methyltestosteron	5000, 10000	1,08
Norgestrel	5000, 10000	1,71
Androsteron	10000000, 50000000	0,02
Kortisol	400000, 800000	0,00
DHEA	500000, 1000000	0,02

REFERENZEN

- Wilson, JD, George, FW, Griffin, JE: The hormonal control of sexual development. Science, 211: 1278 1284, 1981. Imperato-Mcginley, J, Guerrero, T, Peterson, RE: Steroid 5 a-reductase deficiency in man: An inherited form of male pseudohermaphroditism. Science, 186:1213 1215, 1974.
- Approved Standard procedures for the collection of diagnostic blood specimens by venipuncture. 5th Edition: H3-A5: 23(32) 2003, National Committee for Clinical Laboratory Standards (NCCLS)
- Approved guideline procedures for the handling and processing of blood specimens, H18-A2;19(21), 1999. National Committee for Clinical Laboratory Standards (NCCLS).
- Schroff, RJ, Foon, KA, et.al.: Human anti-mouse immunoglobin responses in patients receiving monoclonal antibody therapy. Cancer Res, 45:879 - 885, 1985
- US Department of Labor, Occupational Safety and Health Administration, 29CFR Part 1910.1030, Occupational Exposure to
- Bloodborne Pathogens; Final Rule. Federal Register 1991; 56(235): 64175-82.

 Gronowski AM, Landau-Levine M. Reproductive Endocrine Function in Tietz Textbook of Clinical Chemistry. Ed. Edward R. Ashwood, and Carl A. Burtis. 3rd ed. N.p.:W. B. Saunders Company, 1999. 1603-1636.

© 2000 Qualigen, Inc. Alle Rechte vorbehalten. Qualigen und FastPack sind eingetragene Warenzeichen von Qualigen, Inc. Alle anderen Markenzeichen sind Eigentum der jeweiligen Besitzer.

(877) 709-2169